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Supplementary Note 1: Design of the meta-atom 

To realize the spatiotemporal metasurface and obtain the phase state with uniform coverage of 2π, 

the first step is to design a high-performance programmable metasurface [S1-S3]. The geometrical 

details of the spatiotemporal meta-atom are illustrated in Fig. S1 and comprise an irregular octagon 

metal patch and two metal strips patched on the dielectric substrate. The dielectric substrate used 

in the design is F4B with 𝜀𝑟 = 2.65 and a thickness of 3 mm. The period 𝑝 of the unit cell is 40 mm. 

The bottom layer is also a copper patch, serving as the ground to realize the reflective metasurfaces. 

Two PIN diodes (SMP1320-079L from Skyworks) are placed between the octagon patch and two strips, 

which act as biasing lines for each diode. A metal via hole with a radius of 0.5 mm is further employed 

on the octagon patch to connect the top layer with the ground. The commercial software CST 

Microwave Studio is applied to carry out full-wave simulations and investigate the electromagnetic 

response of the unit cell. In the simulations of the unit cell, periodic boundary conditions are applied 

along both x and y directions, and Floquet ports are used along the -z direction. A normally incident 

plane wave (with x-polarized electric field) is assumed to calculate the reflection coefficient of the 

unit cell under different PIN states. In the optimization stage, we investigate the biasing voltage of 

two PIN diodes with four states (on-on, on-off, off-on, and off-off) through adjusting 𝑙1, 𝑙2 and 𝑙3 

with fixed width 𝑤1~ 𝑤5. We observe that four distinct reflection responses are achieved with about 

90° phase difference at around 3.1 GHz, while the reflection amplitude remains almost unity when 

𝑙1 = 21 mm, 𝑙2 = 35 mm and 𝑙3 = 17 mm. 

 

Figure S1 | Three-dimensional (3D) illustration of the tunable meta-atom. a, The parameters are 

𝑝 = 40, ℎ = 3,  𝑤1 = 10,  𝑤2 = 8,  𝑤3 = 𝑤1 +
𝑤2

3
,  𝑤4 = 𝑤5 = 1,  𝑙1 = 21,  𝑙2 = 35,  𝑙3 = 17  (unit: 

mm) and the via hole is located at the center of F4B substrate. b, Reflected amplitude of the meta-

atom by applying different bias voltages across the loaded diodes. 



S3 

Supplementary Note 2: Physical principle of the spatiotemporal metasurfaces 

We consider microwave reconfigurable metasurfaces that incorporate two electronic PIN diodes. By 

applying different dc voltage, the reflection response of metasurfaces can be switched among four 

discrete states, (on, on), (on, off), (off, on), and (off, off). We optimize the geometries of metasurfaces 

to attain an interval of π/2 among four states while keeping the amplitude as high as possible. On 

this basis, we introduce time-varying modulation into metasurfaces to revamp reconfigurable 

metasurfaces into spatiotemporal metasurfaces [S4-S7]. Here, we consider periodic time-varying 

series that consists of L segments, and the value of each segment is one of the four discrete reflection 

states. The reflection state keeps constant in each segment. Mathematically, such time-varying series 

can be written as, 

𝛤(𝑡) = ∑ 𝛤𝑙𝐺𝑙(𝑡)𝐿
𝑙=1                               (S1) 

where 𝐿 is the number of time-varying series, and 𝛤𝑙 is the reflecting coefficient at 𝑙th segment. 

𝐺𝑙(𝑡) is the gate function, expressed as, 

𝐺𝑙(𝑡) = {
1, (𝑙 − 1)𝑇/𝐿 ≤ 𝑡 < 𝑙𝑇/𝐿
0, 𝑒𝑙𝑠𝑒

                     (S2) 

where 𝑇 is the period of time-varying series, 𝑙 is an integer, ranging from 1 to 𝐿. Evidently, 𝐺𝑙(𝑡) 

is a periodic square-wave signal, which is nonzero only in the 𝑙𝑡ℎ  segment. According to Fourier 

theorem, 𝛤(𝑡)  can be decomposed into a sum of a series of orthogonal complex exponential 

functions with different angular frequencies: 

𝛤(𝑡) = ∑ 𝜖𝑘 𝑒𝑥𝑝(−2𝜋𝑖𝑘∆𝑓𝑡)+∞
𝑘=−∞                       (S3) 

where k is the order of the complex exponential term, ∆𝑓 = 1/𝑇 is the frequency of the first order 

complex exponential term, 𝜖𝑘  is the Fourier coefficient of the kth complex exponential term. In 

frequency domain, each complex exponential function is associated with a single frequency harmonic. 

The frequency of the kth harmonic is 𝑘∆𝑓. And the amplitudes and initial phases of the harmonic is 

expressed by the Fourier coefficient 𝜖𝑘. The Fourier coefficient 𝜖𝑘 can be calculated as, 

𝜖𝑘 =
1

𝑇
 ∫ 𝛤(𝑡) 𝑒𝑥𝑝(2𝜋𝑖𝑘∆𝑓𝑡) 𝑑𝑡

𝑇

0
=

1

𝑇
 ∫ ∑ 𝛤𝑙𝐺𝑙(𝑡)𝐿

𝑙=1 𝑒𝑥𝑝(2𝜋𝑖𝑘∆𝑓𝑡) 𝑑𝑡
𝑇

0
       (S4) 

From the above equation, 𝜖𝑘 is determined by the time-varying series. In turn, by suitably designing 

the time-varying series, we can actively alter the magnitude and phase of a given harmonic wave. By 

changing the period of time-varying series, the frequency of each harmonic can be varied. We simplify 

Eq. (S4) as, 
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𝜖𝑘 =
1

𝑇
∑ 𝛤𝑙 ∫ 𝐺𝑙(𝑡) 𝑒𝑥𝑝(2𝜋𝑖𝑘∆𝑓𝑡) 𝑑𝑡

𝑇

0
𝐿
𝑙=1 = ∑

𝛤𝑙

𝐿
𝑠𝑖𝑛𝑐 (

𝜋𝑘

𝐿
) 𝑒𝑥𝑝 (

𝑖𝜋𝑘(2𝑙−1)

𝐿
)𝐿

𝑙=1        (S5) 

Therefore, as indicated by Eq. (S5), the time-varying reflection coefficients 𝛤(𝑡) can be decomposed 

into the sum of a collection of complex exponential items, each of which is linked with a harmonic. 

To facilitate the understanding, we consider the magnitude and phase of 𝜖𝑘  as the synthetic 

reflection coefficient for the kth harmonic wave. If 𝐿 = 1 , the spatiotemporal metasurfaces are 

degenerated into the basic spatial-modulated metasurfaces. This is consistent with Eq. (S5) because 

𝜖𝑘 = 0 with 𝑘 ≠ 0. If 𝐿 = 1 and 𝑘 = 0, Eq. (S5) is simplified to 𝜖0 = 𝛤1. 

 

Figure S2 | Synthetic state with different initial state and different length of time-varying sequence. 

With the increase of the length of time-varying sequence, the number of synthetic states increase, 

gradually occupying the entire complex plane. The results in the figure are all at the main frequency. 

The distance between the synthetic state and the original point denotes the reflection amplitude, 

and the angle with the x axis denotes the reflection phase. 

When 𝐿 enlarges, the number of synthetic states increase. We note that a time-varying sequence 

can only induce a unique 𝜖𝑘, but a 𝜖𝑘 can be induced by more-than-one time-varying sequences. 

We plot the synthetic state with different 𝑁 and 𝐿, as shown in Fig. S2, where 𝑁 is the number of 

initial states. When 𝑁 = 2, we consider the amplitude of two initial states is unity, and the phase 

different is π. 𝐿 = 8  will produce 28 time-varying series but with only seven synthetic states 
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(because many of them are overlapped) at the main frequency. Figure S2 exhibits a general trend 

that the number of synthetic states increase with the increase of 𝑁 and 𝐿. In our work, we consider 

𝑁 = 4 and 𝐿 = 8, and the synthetic states almost occupy the entire complex plane, which provide 

a high degree of freedom to freely manipulate electromagnetic waves. 

For the same configuration of time-varying series, the synthetic states for different harmonics are 

different. Illustrated in Fig. S3 are the results with 𝑁 = 4 and 𝐿 = 8. It generally shows that the 

reflection amplitude is holistically compressed and becomes smaller for high-order harmonics. Notice 

that different harmonics are not completely decoupled. 

 

Figure S3 | Synthetic state in different harmonic waves. In this figure, 𝑁 = 4 and 𝐿 = 8. It is 

evident that the synthetic states gradually gather together. The amplitude of the synthetic state 

becomes smaller for high-order harmonic waves. 𝑓0 is the frequency of incident wave, i.e., 𝑚 = 0. 

Supplementary Note 3: Comparison between spatial-only and spatiotemporal metasurfaces 

To benchmark the superiority of spatiotemporal metasurfaces, we compare them with spatial-only 

metasurfaces for the same far-field customization task [S8]. For a given far-field, we optimize the 

profile of spatial-only and spatiotemporal metasurfaces using genetic algorithm (GA). The flowchart 

of GA is illustrated in Fig. S4a. The initial population is decoded into a group of metasurfaces, and the 

corresponding scattering performances are simulated and evaluated by minimizing a cost function. 

Then a genetic process (selective reproduction, crossing over, and mutation) is performed to update 



S6 

the individuals until an optimal coding matrix is found. In Fig. S4b, we randomly generate three far-

field patterns and mimic them with spatial and spatiotemporal metasurfaces (8 × 8), respectively. For 

spatial metasurfaces, each meta-atom has four discrete states (Supplementary Note 1) that can be 

chosen. For spatiotemporal metasurfaces, the states of each meta-atom can be freely picked from 

the synthetic states and initial states (Fig. S3). Evidently, the far-field pattern enabled by 

spatiotemporal metasurfaces is highly consistent with the target (in both shape and value), in sharp 

comparison with spatial metasurfaces. It suggests that, by using spatiotemporal metasurfaces, a 

more powerful ability in manipulating electromagnetic waves will be reached. 

 

Figure S4 | Mimicking the far-field with spatial-only and spatiotemporal modulated metasurfaces. 

a, Flowchart of genetic algorithm. b, For the three randomly-given targets, we use spatiotemporal 

and spatial modulation to imitate them. We find that the spatiotemporal metasurfaces give a high 

fidelity not only in pattern shape but also in numerical value. 

Supplementary Note 4: Broadband generalization of intelligent aeroamphibious cloak 

The realization of broadband aeroamphibious cloak is a long-standing dream, albeit challenging. 

Although the cloaking evidence in our work has been demonstrated in a narrow working band, the 

proposed strategy of intelligent aeroamphibious cloak can also be easily generalized into broadband. 

To this end, foremost, we want to highlight that the broadband realization does not place a barrier 
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for intelligent algorithm, i.e., the generation-elimination network. We should add another frequency 

channel and then train the generation-elimination network in a similar manner. The difficulty is 

attributed to the metasurface physical performance and the modulation speed for spatiotemporal 

metasurfaces. In the following, we will specifically illustrate how to reach this goal. 

 

Figure S5 | Broadband realization of intelligent aeroamphibious cloak. a, The spatiotemporal 

metasurfaces suppress the scattering wave in broadband. Inset shows a broadband meta-atom. b, 

Principle of reaching zero reflection in broadband. 

For example, under the illumination of incident wave with the bandwidth from 𝑓0 to 𝑓3, we aim to 

completely suppress the scattering wave (Fig. S5a). For the incident frequency component 𝑓0, it will 

generate a series of harmonic waves that affect the scattering wave at other frequencies. Similarly, 

for any incident frequency component from 𝑓0 to 𝑓1, it will generate a series of harmonic waves. 

Thus, for the scattering wave at 𝑓3, it is contributed by the zero-order harmonics induced by incident 

wave at 𝑓1, first-order harmonics induced by incident wave at 𝑓2, second-order harmonics induced 

by incident wave at 𝑓1, third-order harmonics induced by incident wave at 𝑓0, labelled as 0,1,2,3 (Fig. 

S5b). Similarly, for the scattering wave at 𝑓0, it is contributed by -3,-2,-1,0. If we can exactly engine 

the reflection amplitude of these orders become zero, then the scattering field will be zero. Typically, 

the lower the order, the greater the reflection amplitude. However, we find it is possible to make 

these low-order harmonics become zero, which relies on the optimization of time-varying sequence 

and the physical properties of the meta-atom. Broadband and reconfigurable meta-atoms have been 

widely studied [S4]. For example, the double-layered meta-atom in the inset of Fig. S5a that 
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incorporates diode on a metallic resonator etched on dielectric substrate has great potential to work 

at broadband. After careful geometrical design, the reflection phase difference between on and off 

diode state is possible to maintain unchanged in broadband. This way, we just need to optimize the 

time-varying sequence to make all low-order harmonics become zero. 

Supplementary Note 5: Generation-elimination network 

The architecture of the generation-elimination network, constituted by an encoder, a latent space, a 

decoder, and a forward network, is schematically depicted in Fig. 3a with the detailed parameters 

listed in Fig. S6. As elucidated in the main text, the complete process can be divided into three steps: 

the pre-training of the forward network, the training of the whole generation-elimination network, 

and the inference phase. 

The first step. Only the forward network composed of nine fully-connected layers is involved in this 

step. The detailed definition of the forward network is shown in the last three rows in Fig. S6. 
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Figure S6 | Structure and parameters of the generation-elimination network. The recognition 

module combined with the Input and Label composes the encoder, while the reconstruction module 

combined with the Label composes the decoder. The latent space includes fully-connected 

operations for mean (“𝑚𝑢”) and standard deviation units (“𝑠𝑖𝑔𝑚𝑎”) followed by the Gaussian 

sampling (“Sampled”). Both “FC” and “fc” refers to the fully-connected layer; “relu” refers to the 

ReLU activation function; “linear” refers to the linear activation function; “sigmoid” refers to the 

sigmoid activation function; “T_FC” is the abbreviation of transposed fully-connected layer and “F_FC” 

is the abbreviation of the fully-connected layer in the forward network. 

The second step. The whole CVAE-based [S9] generation-elimination network participates in this core 

step. The parameters of the pre-trained forward network are fixed when training the entire network. 

As shown in Fig. S6, the recognition module is composed of three fully-connected layers, encoding 

the concatenation of the Input and Label into lower dimensions that are used to input into the latent 

space. The reconstruction module is composed of a concatenation operation and four transposed 

fully-connected layers, decoding the sampled latent variables into 20-dimensional design parameters. 

The third step. There is no further training in the last inference step, and only the decoder and the 

forward network are involved. The rounding operation is carried out in this step. The sampled 

variables from the standard Gaussian distributions combined with the Label (i.e., the desired radar 

cross section, RCS) will be firstly decoded into countless candidates (i.e., 20-dimensional design 

parameters) [S10-S12]. Then, the design parameters will be rounded and transformed into 181-

dimensional RCS value through the forward network. The best candidate is selected by finding the 

minimal RCS deviation with the Label. Here, we define the deviation as the Manhattan distance. 

Other metrics such as Euclidean distance and correlation distance could be adopted to screen out 

the corresponding best candidate or increase the loss on the main lobe if only focusing on that. 

As elucidated in the third step and depicted in Fig. 3a, the generated candidates should be rounded 

before being sent into the forward network for further elimination. The 20-dimensional candidate is 

composed of 10 groups of [amplitude, phase]. The key point is that, because of the limited choices in 

the spatiotemporal modulation of metasurfaces, each of [amplitude, phase] group needs to be 

approximated to one of the 81 points (synthetic reflection states in Fig. 2c of the main text). Certainly, 

we should first convert [amplitude, phase] groups into the [real, imaginary] coordinate before the 
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approximation. As schematically illustrated in Fig. S7, the yellow point (one of the generated groups) 

will be approximated to the nearest green point (the limited choice) which has the minimum 

Euclidean distance with it. Besides, the RCS retrieved from the optimal candidate is also shown in Fig. 

S7 in either case. The little difference between the blue (the ground-truth) and orange (the prediction) 

curves in the after-rounding case verifies the practicability and effectiveness of our network. 

 

Figure S7 | Rounding operation in the inference phase. All generated candidates are composed of 

10 [amplitude, phase] groups, each of which (the yellow point) will be approximated to the nearest 

choice (the green point) before being transformed into the RCS. The optimal after-rounding 

candidate is selected by finding the minimal RCS deviation between the blue curve and the orange 

curve in the right bottom plot. 

Supplementary Note 6: Supervised learning loss and the accuracies 

In the training of the forward network, it is automatically cut off at 211 epochs when the patience is 

set as 50 epochs as an early stopping regularization measure [S13]. As shown in Fig. S8, the validation 

loss reaches the minimal mean square error (MSE) of 1.28×10-4 at 161 epochs. Similarly, for the 

generation-elimination network with the patience set as 30 epochs, the training is automatically cut 

off at 239 epochs and the validation loss outputs the minimal value of 18.85 at 209 epochs. The 

objective loss function of the generation-elimination network is defined as: 

ℒ(𝑥, 𝑦; 𝜃, 𝜑) =  𝐾𝐿[𝑞𝜑(𝑧|𝑥, 𝑦)|| 𝑝𝜃(𝑧|𝑦)] − 𝔼𝑞𝜑(𝑧|𝑥, 𝑦)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧, 𝑦)] + 𝛼(𝑦 − 𝑦′)2   (S6) 
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where the first term is KL  divergence loss (evaluating the similarity between the approximate 

variational posterior and the prior probability), the second term is the reconstruction loss of 𝑥 

(calculated as the negative maximum likelihood) and the third term is the prediction loss of 𝑦 

(calculated as the MSE over the point). Notice that 𝑥 is the 20-dimensional input, 𝑦 is the 181-

dimensional label variable and 𝑧  is the latent variable. The deterministic RCS value of 𝑦′  is 

predicted from the forward network based on the predictive distribution 𝑃𝑝(𝑦|𝑥) . The hyper-

parameter 𝛼 is set as 2,000. 

 

Figure S8 | The loss of forward network and generation-elimination network over epochs. a, The 

training and validation losses of the forward network. To avoid overfitting, the network is early-

stopped at 161 epochs with the patience set as 50 epochs. b, The training and validation loss of the 

generation-elimination network. Similarly, the network is early-stopped at 209 epochs with the 

patience set as 30 epochs. 

To quantity the performance of our network, we systematically define two criteria. (1) MSE, the mean 

square loss between the predicted RCS and ground truth RCS. (2) Accuracy (1 − ℯ𝑎𝑣𝑒) × 100%, 

where ℯ𝑎𝑣𝑒 is defined as the average error between the predicted RCS and ground truth RCS, that 

is, 
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖

′|/𝑦𝑖
𝑛
𝑖=1 , where 𝑦𝑖(𝑦𝑖

′) represents the 𝑖th data point of the ground truth (predicted) 

RCS, and 𝑛 is the number of RCS points. 

Figure S9 displays the summary statistics of two quantitative criteria when trained with the forward 

network and generation-elimination network, separately. Without reducing learning rate (reduceLr) 

measure [S14], the accuracy can be as high as 99.15% for the forward network. For the generation-
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elimination network, the reduceLr measure does little help to the accuracy (from 97.67% to 97.68%), 

while increasing the dimension of the latent space improves the accuracy to some extent, from 96.86% 

of 2-dimension to 97.68% of 10-dimension. For comparison and reference, we also provide the 

accuracy of the predicted RCS that is selected without rounding operation on candidates, that is, the 

generated candidates are directly sent into the forward network for elimination. Further, we take 

other optimization measures such as batch normalization [S15] and dropout [S16], none of which can 

bring obvious improvement for the network performance. 

 

Figure S9 | Two criteria to quantitatively evaluate the performance of networks upon different 

configurations. “reduceLr” refers to the reduce learning rate measure. “dim” is the abbreviation of 

dimension. 

Supplementary Note 7: Gyroscope detector 

In our system, an attitude sensor (HWT905-232) is applied to real-time recognize the drone’s gesture 

so that the invisible drone can customize scattering wave in specific direction (Fig. S10a). The attitude 

sensor is a high-performance 3D motion attitude measurement system based on micro-electro-

mechanical system (MEMS) technology, including three-axis gyroscope, three-axis accelerometer, 

three-axis electronic compass and other motion sensors. By integrating various high-performance 

sensors and attitude dynamics algorithm engines, the drone can be provided with a three-axis 

attitude angle (𝛼, 𝛽, 𝛾 in Fig. S10b) with high accuracy (the measurement accuracy is 0.05°), high-

dynamics and real-time compensation. The attitude sensor is connected with a six-in-one serial port 

conversion module to achieve USB-232 digital interface conversion and data serial input/output, 

which is driven by the CP2102 driver. To intuitively show the working effect of the attitude sensor in 

the experiment, we use the 3D attitude model in the built-in upper computer to illustrate the real-

time attitude of the drone. Postures of three random moments are captured in Fig. S10c with 
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different attitude angles, which are further input into the generation-elimination network to inform 

the network of the invisibility requirement under different inclinations. The three curves in Fig. S10d 

show the changes of the acquired three-axis attitude angles, depicting the flight attitude of the drone. 

 

Figure S10 | Result of the attitude sensor. a, Diagram of the attitude sensor in the experiment setup, 

which is applied to recognize the drone’s three-axis attitude angles in b. c, Posture of the three 

random moments captured by the 3D attitude model in the built-in upper computer. d, Acquired 

three-axis attitude angles. 

Supplementary Note 8: Camera and environment discrimination network (EDN) 

In the drone system, camera is another essential part of the perception module that is responsible 

for collecting and judging the ever-changing background. The type of camera we use is Raspberry Pi 

NoIR Camera v2 (Fig. S11a), which is specially designed for raspberry pie with IMX219 expansion 

board and is connected with CMOS Serial Interface (CSI) interface. To capture the real-time 
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environment, first, we use the CSI camera to achieve the transmission of rtsp stream and explore the 

dynamic acquisition of multiple streams. Then, we have the picture of the background environment 

in millisecond scale with the size of  1920 × 1080 × 3 , as shown in Fig. S11a, the background 

information of three random moments is recorded. Finally, the picture is resized into 32 × 32 × 3 

and further input into the EDN for environmental discrimination, which is constructed as a 

classification network. The structure of EDN is presented in Fig. S11b, mainly containing the feature 

extraction module (2 convolutional and 2 max-pooling layers) and the classification module (3 full 

connection layers). The output of EDN is one of four backgrounds coded as 0, 1, 2, 3. Adam optimizer 

is employed to update the parameters to complete the training of the model [17-18]. During training, 

the learning rate and batch size are set to 0.001 and 16, respectively. Forty environmental pictures 

are collected as training data, which can be divided into four types, including grass, cement, 

playground and water (Fig. S11c). The training result is shown in Fig. S11d, where the validation loss 

converges well with the training loss and the accuracy of EDN measured by the other 10 testing data 

is 100%. 

 

Figure S11 | Principle and function of the attitude sensor. a, Diagram of the CSI camera and the real-

time environment capture at three moments. b, Detailed structure of EDN, which mainly contains 

feature extraction and classification module. c, Environment database of EDN, including four types: 

grass (𝐸0), cement (𝐸1), playground (𝐸2) and water (𝐸3). d, The training result of EDN. 
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Supplementary Note 9: Realization of an intelligent electromagnetic detector 

A high-performance electromagnetic detector is essential for the invisible drone, which is used to 

perceive the information of incident wave, including direction of arrival (DOA) (the pitch angle θ, 

horizontal angle φ), frequency, and polarization in the microwave band. The schematic view of the 

proposed intelligent electromagnetic detector and its operation principle are displayed in Fig. S12. 

The detector mainly consists of a four-port wide-band antenna array, an RF processor (AD9361), and 

an algorithm processing platform (ZYNQ). The antenna used here is a wide-band coplanar waveguide 

(CPW) antenna, whose working frequency is set from 2 GHz to 4 GHz. Figure S13 shows the structure 

and the S11 parameters during this frequency band (< -10 dB). Four antenna elements are printed on 

an octagon substrate using printed circuit board (PCB) technology. The dielectric substrate is made 

of F4B material (𝜀 = 4.4) and the thickness is 1 mm. Antenna elements are placed at a 90-degree 

rotation interval to constitute an omnidirectional antenna array and curtail the mutual coupling. 

 

Figure S12 | Working flowchart of the intelligent electromagnetic detector. For an unknown 

incident wave, the antenna array receives electromagnetic signal, which is then processed by AD9361 

(a software defined radio (SDR) platform), containing low-noise amplifier (LNA), mixer, analog/digital 

filter, analog-to-digital converter (ADC), etc. After the ADC sampling, the voltage sequence is 

transferred to the ZYNQ platform, where the machine learning model is intergrated. Finally, the 

information of the incoming wave is directly displayed on an user interface in a millisecond timescale. 

From the flowchart in Fig. S12, an electromagnetic wave impinging on the antenna array will induce 

the voltage on each antenna element. For different incident wave, the induced voltages are different, 

making it possible to inversely determine the incident wave by the induced voltages. The four-port 
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voltages from the antenna array are transmitted into radio frequency (RF) processor. To mitigate the 

complexity and the cost of the electrical system, RF switch is used to serially read four channels from 

the antenna array. ZYNQ controls the SP4T RF switcher (HMC7992) to sample the signal from four 

different ports and make the AD9361 to receive it. The RF processor is used for amplification, analog 

filtering, and down converting of the input signal and then passes it to the ADC for sampling. 

 

Figure S13 | Details of wideband antenna array. a, Top view of the antenna array. The antenna array 

is composed of four CPW antenna. b, The S11 parameter of the CPW antenna element. 

After the processing by AD9361, the first step in ZYNQ is to obtain the frequency component of the 

incoming wave. This can be readily retrieved by frequency sweep and Fourier transform. Then, the 

voltage vector will be fed to the neural network for the DOA and polarization determination. Here, 

we deploy the generalized regression neural network (GRNN) to inversely deduce the information of 

one incident source [S19,S20]. As a member of radial basis neural networks, GRNN has a strong 

nonlinear approximation ability, making it suitable for this function fitting like task. In one of our 

previous works, we have verified the feasibility of the GRNN method. Here, we just skip the detailed 

description of this method. 

We note that the entire detection takes about 25 ms, among which 18 ms is for frequency sweeping 

over broadband, 2 ms is for the neural network calculation, and 5 ms is consumed by other data-

processing algorithms, such as fast Fourier transform and median filter. Compared with conventional 

spatial spectrum methods, one advantage of this intelligent electromagnetic detector is that, we only 
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consider amplitude information so that phase disturbances introduced by the switches and other 

miscellaneous components will not greatly affect the experimental accuracy. 

Supplementary Note 10: Control system of the spatiotemporal metasurfaces 

In total, four metasurface boards are covered over the drone to render it invisible, including top 

board (10 x 10 unit cells), bottom board (10 x 11 unit cells) and two side boards (8 x 11 unit cells). 

Each unit cell on the same column is connected with the same signal lines and thus shares the same 

state. There are two signal lines to control the two PIN diodes inside the unit cell, allowing four states 

(on, on), (on, off), (off, on) and (off, off), as shown in Fig. S14. 

 

Figure S14 | Circuit design of the metasurface board. a, The top view of the metasurface board. Each 

column of the metasurfaces own two signal lines (L1 and L2), allowing four discrete reflection states. 

b, The bottom view of the metasurface board. The control signal lines are connected with STM32 

chip on the control board. The control board first receives the signal sequence and then outputs the 

signal by the I/O on the STM32 chip. 

The PIN diode is controlled by the microcontroller unit (MCU). We adopt the STM32 series chip to 

output the periodic time-varying voltage sequence in microsecond. To ensure a fast switch speed and 

to improve the scalability of the system, four MCUs are connected via one bus (RS485). Benefitting 

on the differential voltage transmission, the RS485 bus owns strong anti-interference ability and can 

realize a long-distance transmission. Additionally, it can mount up to 32 MCUs on one bus, which is 

suitable for the large-scale system. The bus is controlled from the deep learning hardware platform—

Jetson Xavier. After generating the spatiotemporal sequence by the pre-trained generation-
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elimination network, Jetson sends out the signal using universal asynchronous receiver/transmitter 

(UART) port, which is immediately transferred to RS485 communication protocol as the input of bus. 

Supplementary Note 11: Working flowchart of intelligent invisible drone 

The intelligent visible drone needs multiple sensors to recognize the surrounding environment and 

incoming wave. These sensors mainly include a gyroscope, a camera, and an electromagnetic 

detector. The gyroscope (HWT905-232) is used to real-time judge the attitude, acceleration speed, 

and angular velocity of the drone itself. The camera is used to dynamically recognize the surrounding 

environment, such as grassland, water area, desert, and cement floor. 

 

Figure S15 | Control system of the intelligent invisible drone. From the right to the left, Jetson first 

reads the detection information from the sensors and then sends it to the pre-trained neural network. 

The neural network outputs the spatiotemporal voltage sequence by the UART port. The signal is 

converted to the RS485 communication protocol and distributed to each metasurface sub-system 

(four in total) using RS485 bus. Finally, the signal will be received by the UART port on the STM32, 

which is applied to the metasurface board using input/output (I/O). IMU, inertial measurement unit. 

UART, universal asynchronous receiver/transmitter. 

As the core control board of the invisibility system, the whole operation process of Jetson is depicted 

in Fig. S15, which can be divided into perception, decision, and execution modules. For the perception 

module, first, we open the CSI camera and realize the transmission of real-time streaming protocol 
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(RTSP) stream to dynamically acquire multiple streams for exploration. Then, the Jetson captures the 

ever-changing background and save it as a picture, which is further input into the environment 

discrimination network (EDN) for environmental discrimination. Third, Jetson reads the dynamic 3D 

attitude of the drone from the gyroscope through USB interface. Combined with the detected 

incident wave’s direction through the EM detector, the information of all these modules is integrated 

into the real-time invisibility demand and further input into the pre-trained generation-elimination 

network. After seeking out the best output candidate, the optimal time-varying sequences for 

spatiotemporal metasurfaces are then converted to voltage signals for all metasurface boards. To the 

execution module, the time-varying sequence will be output to the bus and received by the STM32 

on each board. The MCU then outputs the voltage signal through I/O interface to dynamically 

transform the states of the diodes on metasurfaces following the spatiotemporal signal. 

 

Figure S16 | Flow chart of the operation process of Jetson. As the core control board of the 

invisibility system, the whole operation process of Jetson can be divided into perception, decision, 

and execution modules, for self-adapting to the ever-changing background and detection manner. 

Supplementary Note 12: Experiment setup of invisible drone against amphibious background 

The experiment of the intelligent invisible drone on the land/sea is carried out in an anechoic 

chamber, mainly including a transmitting horn antenna, receiving antennas (probes), an intelligent 

EM detector and a Jetson development board (NVIDIA Jetson Xavier NX) [S21-S24], as shown in Figs. 
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S17a and S17b. The transmitting antenna is mounted on a lever that is bound to the base of the large 

triangle bracket, while 8 detectors are fixed on the small tripods. The transmitting antenna and all 

probes are arranged on the 𝑥 plane, where the transmitting antenna is suspended on the top of the 

drone at a distance of 2 m. Assuming the top of the drone is at 𝑧 = 0 plane and the center is the 

coordinate origin, we further adjust the height of 8 detectors to detect 8 points in the far-field section 

of 𝑦 = 0 plane (Fig. S17c). Through measurement and calculation, 8 detectors are located at angles 

of 𝛿 = -68°, -50°, -38°, -24°, 24°, 41°, 50°, 65°. To mimic the on-site environment of grassland/sand-

land/sea, we put acrylic containers on the absorbing materials, which are used to contain turfs/soil/ 

water, as shown in Fig. S17d-S17f. To build a set of intelligent invisibility system, an intelligent EM 

detector composed of a four-port antenna array is used for the simultaneous attainment of 

frequency, direction-of-arrival and polarization. In conjunction with the camera and attitude sensor, 

we can output the time-varying sequence of spatiotemporal metasurfaces in real-time for an 

arbitrary invisibility requirement. 

The brief process of the invisibility experiment is as follows. First, we measure the far-field of all 

backgrounds at the desired frequency. Second, we turn on the Jetson to automatically detect the 

attitude of the drone and identify the background environment. Third, the system processes the in-

situ invisibility RCS requirement according to the measured background and attitude information. 

Then, we feed the preprocessed RCS and the perceived incident wave information, into the pre-

trained generation-elimination network, which automatically outputs the corresponding time-

varying sequence of spatiotemporal metasurfaces. The RCS of the cloaked drone is further measured 

and compared with the background RCS, while that of the bare drone is also tested for comparison. 

The operation procedure of the illusive experiment is similar to the above [S25-S27]. First, we 

measure the RCS of an illusive object at the desired frequency. Combined with the perception module, 

we input the illusive RCS into the decision module, which outputs the corresponding metasurface 

pattern. Finally, the RCS of spatiotemporal metasurfaces is measured. In Fig. 5 of the main text, we 

can observe that the detected value of the background and cloaked drone is consistent with each 

other, regardless of the attitude change of the drone itself and the change of external environment. 
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Figure S17 | Experimental setup of the invisible drone. (a) Panorama and (b) direct view of the 

experiment setup. c, 8 detectors are fixed on the small tripods at angles of 𝛿 = -68°, -50°, -38°, -24°, 

24°, 41°, 50°, 65°, while the distance between probes and the origin o is about 1.5 m. To mimic the 

environments of (d) grassland, (e) sand-land, and (f) sea, we put acrylic containers on the absorbing 

materials, which are used to hold turfs/soil/water. 
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